Projects-Highlights
 Magnetic Nanostructure Characterization: Technology & Applications
Home
MagnaCharta is settled in         Balkan Center: KEDEK: Building A. Room: 0.3
 ++302310990576  magnacharta@physics.auth.gr
MagnaCharta, A.0.3, PO Box, Balkan Center-KEDEK, 57001, Thessaloniki-Greece
Systematic fabrication of thin films, multilayers, nanoparticles composed of at least one magnetic constituent. Co-based magnetic multilayers Structural,   magnetic   and   spectroscopic   magneto-optical   features   of   Co   based   multilayers   prepared   by   e-beam   evaporation.   In   order   to   examine interface and induce magnetism effects, the layer thickness was always kept at a few (< 4) monolayers. Our Work 1.   CoCr/Pt   multilayers   with   adjustable   perpendicular   anisotropy,   E.   Th.   Papaioannou   et   al.   J.   Appl.   Phys.   103     093905-1-7 (2008). DOI 2.   Pt-Co   multilayers:   Interface   effects   at   the   monolayer   limit,   M.   Angelakeris   et   al.   Phys.Stat.   Sol   (a)   205   2302- 2306 (2008). DOI 3.   Influence   of   multilayer   modulation   on   structural   and   magnetic   features   in   the   Pt/Sm-Co   system,   M.   Angelakeris et al. J. Magn. Magn. Mater. 321, 3155–3158 (2009). DOI 4.   Tuning   the   perpendicular   magnetic   anisotropy   of   Co-based   layers   in   multilayered   systems,   M. Angelakeris   et   al. J. Nanosci. Nanotechno. 10  pp. 6082-6086 (2010). DOI Novel architectures of magnetic materials Magnetic   heterogeneous   systems   whose   properties   are   defined   on   a   nanometer   scale   has   become   one   of   the   most   promising   directions   in   materials science.   Recent   development   of   lithographic   techniques   as   well   as   improved   chemical   synthesis   methods   allows   researchers   to   engineer   novel nanostructured    materials    consisting    of    arrays    of    plots,    self-organized    nanocrystals    and    multilayers    grown    as    patterns    on    different    substrates. Combination   of   self–assembly   techniques   with   the   use   of   patterned   substrates   in   an   effort   to   manipulate   the   local   arrangement   of   the   nanoparticles and produce well defined large-scale arrays of magnetic nanoentities. Our Work 1.   Magnetic      nanostructures      obtained      by      colloidal      crystallization      onto      patterned      substrates,      O.      Crisan   et al., J. Magn. Magn. Mater. 272-276, E1285 (2004). DOI 2.   Measurements      of      the      magnetoresistance      effect      in      Co/Pt      multilayers      grown      on      patterned      substrates,     E.    Papaioannou et al.,  J. Magn. Magn. Mater. 272-276, E1323 (2004). DOI   3.   The      influence      of      patterned      substrates      on      structure      and      magnetism      of      Au/Co      multilayers,      M.     Angelakeris et al., J. Magn. Magn. Mater. 272-276, E1317 (2004). DOI   4.   Magnetic   Force   Microscopy   on   Co/Pt   multilayers,   V.   Karoutsos   et   al.   Solid   State   Phenomena   152-153   241- 244 (2009). DOI Magnetic nanoparticles: Tuning size, shape, phase Magnetic   nanostructures   ranging   from   single-phase   spherical   to   core/shell   ones   may   be   prepared   by   varying   the   conditions   during   the   synthetic approach. Our Work 1.   Critical   radius   for   exchange   bias   in   naturally   oxidized   Fe   nanoparticles,   C.   Martínez-Boubeta   et   al.,   Phys.   Rev.   B 74 054430 (2006). DOI 2.   Impact   of   synthesis   parameters   on   structural   and   magnetic   characteristics   of   Co-based   nanoparticles,   S. Mourdikoudis et al. J. Nanopart. Res. 11,1477-1484 (2009). DOI 3.   Structural      and      magnetic      features      of      heterogeneously      nucleated      Fe-oxide      nanoparticles,      K.      Simeonidis   et al.,  J.  Magn. Magn. Mater.  320 (9) 1631–1638 (2008). DOI 4. The      effect      of      composition      and      structural      ordering      on      the      magnetism      of      FePt      nanoparticles,      O.      Kalogirou et al., J. Nanosci. Nanotechn. 10 pp. 6017-6023 (2010). DOI 4.   Morphology   influence   on   nanoscale   magnetism   of   Co   nanoparticles:   Experimental   and   theoretical   aspects   of exchange bias, K. Simeonidis et al. Phys. Rev.  Rev. B 84 , 144430 (2011).  DOI 6.   Optimum      nanoscale      design      in      ferrite      based      nanoparticles      for      magnetic      particle      hyperthermia»,      S.     Liebana      Vinas,      K.      Simeonidis,      U.      Wiedwald,      Z.-A.      Li,      Zh.      Ma,      E.      Myrovali,     A.      Makridis,      D.      Sakellari,      G. Vourlias,  M. Spasova,  M. Farle, M. Angelakeris, RSC Adv. 6, 72918 (2016). DOI 7. A   versatile   large-scale   and   green   process   for   synthesizing   magnetic   nanoparticles   with   tunable   magnetic   hyperthermia   features»,   K.   Simeonidis,   S. Liébana   Viñas,   U.   Wiedwald,   Z.   Ma,   Z.-A.   Li,   M.   Spasova,   O.   Patsia,   E.   Myrovali, A.   Makridis,   D.   Sakellari,   I.   Tsiaoussis,   G.   Vourlias,   M.   Farle   and M. Angelakeris, RSC Adv 6, 53107 (2016). DOI
Synthesis