Projects-Highlights
 Magnetic Nanostructure Characterization: Technology & Applications
Schemes of our materials on modern technological aspects such as information technologies, theranostics and sustainable growth. Magnetomechanical Stress The   generation   of   mechanical   forces   via   magnetic   fields,   the   so   called   magneto-mechanical   effect,   is   a   powerful manipulation   tool   of   magnetic   nanoparticles   inside   variable   environments.   The   combination   of   alternating,   static   or rotating   magnetic   field   configurations   with   magnetic   nanoparticles   allows   transformation   of   electromagnetic   to mechanical   energy.   Magnetic   nanoparticles   may   transfer   energy   to   living   matter   via   magneto-mechanical   stress applied   to   the   cell   membrane,   cytoskeleton,   or   organelles   promoting   crucial   intracellular   processes,   opening   novel pathways    for    innovative    cancer    treatment    schemes.        Intrinsically,    cell    types    respond    differently    to    external magnetic   fields   due   to   differences   in   their   gene   expression   profiles.   In   this   work,   an   easy   to   operate   device producing   different   configurations   of   magnetic   fields   with   respect   to   their   amplitude   and   frequency   is   presented and   characterized.   The   generated   static,   alternating   and   rotating   magnetic   fields   are   experimentally   quantified   and   numerically   evaluated   together   with the evolving range of field forces exerted initially on magnetic nanoparticles and eventually in vitro. Our Work 1. Hetero-nanocomposites    of    magnetic    and    antifungal    nanoparticles    as    a    platform    for    magnetomechanical    stress    induction    in    Saccharomyces cerevisiae, K. Giannousi et al., J. Mater. Chem. B 3, 5341 (2015). DOI   2. Magneto-mechanical   action   of   multimodal   field   configurations   on   magnetic   nanoparticle   environments,   N.   Maniotis   et   al.,   Journal   of   Magnetism   and Magnetic Materials, in press  (2017). DOI 3. Effect   of   low   frequency   magnetic   fields   on   the   growth   of   MNP-treated   HT29   colon   cancer   cells,   K.   Spyridopoulou   et   al.,   Nanotechnology   29,   17, 175101 (2018). DOI Magnetic hyperthermia agents In      this      project      we      study      the      heating      efficiency      of      magnetic      nanoparticles.optimize   their   heating   response   with respect   to   particles,   conditions,   measurement   and   quantification   process.   Best   performing   magnetic   nanoparticles are   subsequently   evaluated   as   magnetic      hyperthermia   agents   in   vitro.   Different      human      breast      cancer      cell      lines and   reference   healty   cell   ones,   are   used      to      assess      the      suitability      of      nanoparticles      for      in      vivo      application.      The     experiments      revealed      a      very      good      cytotoxicity      profile      and      significant      uptake      efficiency      together      with   relatively high   specific   absorption   rates   and   fast   thermal   response,   features   that   are   crucial   for   adequate   thermal   efficiency   and minimum duration of treatment. Our work 1. In-situ   particles   reorientation   during   magnetic   hyperthermia   application:   Shape   matters   twice»,   K.   Simeonidis   et al., Scientific Reports 6, 38382 (2016). DOI 2. Arrangement   at   the   nanoscale:   Effect   on   magnetic   particle   hyperthermia,   E.   Myrovali   et   al.,   Scientific   Reports   6, 37934 (2016). DOI 3. Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia, S. Liebana Vinas et a., RSC Adv. 6, 72918 (2016). DOI 4. A    novel    strategy    combining    magnetic    particle    hyperthermia    pulses    with    enhanced    performance    binary    ferrite    carriers    for    effective    in    vitro manipulation of primary human osteogenic sarcoma cells, A. Makridis et al,  Int. J. Hyper. 32(7):778-785 (2016). DOI 5. Ferrimagnetic   nanocrystal   assemblies   as   versatile   magnetic   particle   hyperthermia   mediators,   D.   Sakellari   et   al.,   Mat.   Sci.   Eng.   C,      58,   187–193 (2016). DOI 6. Enhanced   biomedical   heat-triggered   carriers   via   nanomagnetism   tuning   in   ferrite-based   nanoparticles,   M. Angelakeris   et   al.,   J.   Magn.   Magn.   Mater. 381, 179-187 (2015). DOI   7. Exploring   multifunctional   potential   of   commercial   ferrofluids   by   magnetic   particle   hyperthermia,   D.   Sakellari   et   al.,   J.   Magn.   Magn.   Mater.   380   360- 364 (2015).  DOI 8. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents, A.  Makridis et al., J. Mater. Chem. B 2, 8390 (2014). DOI   9. Tunable AC   magnetic   hyperthermia   efficiency   of   Ni   ferrite   nanoparticles,      G.   Stefanou   et   al.,   IEEE   Transactions   on   Magnetics   50,   Issue   12,   6872577 (2014). DOI   10. Can   commercial   ferrofluids   be   exploited   in AC   magnetic   hyperthermia   treatment   to   address   diverse   biomedical   aspects?,   M. Angelakeris   et   al.,   EPJ Web of Conferences 75, 08002 (2014). DOI 11. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling», D. Serantes et al., J Phys. Chem. C 118, 5927-5934 (2014). DOI 12. Polyhedral   iron   oxide   core-shell   nanoparticles   in   a   biodegradable   polymeric   matrix:   preparation,   characterization   and   application   in   magnetic   particle hyperthermia and drug delivery», M. Filippousi et al., RSC Advances 3, 24367 (2013). DOI 13. Fe-based nanoparticles as tunable magnetic particle hyperthermia agents, K. Simeonidis et al., J. Appl. Phys. 114, 103904 (2013). DOI 14. Learning   from   Nature   to   Improve   the   Heat   Generation   of   Iron-Oxide   Nanoparticles   for   Magnetic   Hyperthermia Applications»,   C.   Martinez-Boubeta   et al., Scientific Reports, 3:1652 (2013). DOI 15. Novel    core–shell    magnetic    nanoparticles    for    Taxol    encapsulation    in    biodegradable    and    biocompatible    block    copolymers:    Preparation, characterization and release properties», M. Filippousi et al., International Journal of Pharmaceutics 448, 221– 230 (2013). DOI 16. Adjustable   Hyperthermia   Response   of   Self-Assembled   Ferromagnetic   Fe-MgO   Core–Shell   Nanoparticles   by   Tuning   Dipole–Dipole   Interactions,   C. Martinez-Boubeta et al., Adv. Func. Mater. 22, Issue 17, 3737–3744 (2012). DOI 17. Size-dependent   mechanisms   in   AC   magnetic   hyperthermia   response   of   iron-oxide   nanoparticles,   K.   D.      Bakoglidis   et   al.,   IEEE   Trans.   Magn,   48,   4, 1320 (2012).   DOI    18. In   vitro   application   of   Fe/MgO   nanoparticles   as   magnetically   mediated   hyperthermia   agents   for   cancer      treatment, A.   Chalkidou   et   al.   J.   Magn.   Magn. Mater. 323  775–780 (2011). DOI   19. Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles, D. Serantes et al.,  J. Appl. Phys.  108, 073918 (2010). DOI   20. Self-assembled   multifunctional   Fe/MgO   nanospheres   for   magnetic   resonance   imaging   and   hyperthermia,   C.   Martinez-Boubeta   et   al.,   Nanomedicine:     Nanotechnology, Biology, and Medicine 6, Issue 2, 362-370 (2010). DOI   From film growth to GMR sensor The      Ag-Co      system      either      in      multilayer      or      in      granular      alloy      form      exhibits      the      GMR      (Giant            MagnetoResistance)      effect.      By      adjusting      the     modulation        parameters        an        intermediate    structure        may        be        formed        offering        new        possibilities        for      magnetoelectronic      applications.      This      structure      resides      in      the      limit      between      multilayers      and      granular      alloys     and      is      called   granular      multilayer.     The      dependence      of      GMR      values      on      the      individual      layer      thickness      and      on     the      total      film      thickness      was      parameterised      and      magnetoresistance      values      of      16%      at   300      K      and      36%      at      30     K      were      achieved.      The      outcome      of      this      study      is      the      fabrication      of      a      two-dimension      magnetic      field      sensor     consisting      of      8      specific      elements      forming      a      2x4   array.      The      sensor      is      specialized      in      small      magnetic      field     regions      while      its      response      was      found      quite      satisfactory      regarding      its      uniformity      and      repeatability.      The     sensor  may  be upgraded to larger arrays and to three dimensions in order to fulfill various market needs. Our work 1. Magnetic,   magneto-optic   and   magnetotransport   properties   of   nanocrystalline   Co/Au   multilayers   with   ultrathin     Au interlayers», E. Th. Papaioannou, et al. J. Nanosci. Nanotech. 8 4323-4328 (2008). DOI   2. Electromagnetic   waves   penetration   and   magnetic   properties   of   AgPt/Co   nanostructures»,   A.   Rinkevich   et   al.   J.   Magn.   Magn.   Mater.   317,   15-19     (2007). DOI   3. Magnetic moment of Au at Au/Co interfaces: A direct experimental determination», F. Wilhelm et al., Phys. Rev. B 69, 220404(R) (2004). DOI   4. Giant magnetoresistance response in Ag-Co multilayers and nanoparticles», M. Angelakeris et al., Sensors and Actuators A, 106, 91 (2003).  DOI 5. GMR study leading to sensor fabrication on Ag-Co multilayers», M. Angelakeris et al., Sensors and Actuators A91, 180 (2001). DOI 6. Structural and giant magnetoresistance characterisation of Ag-Co multilayers», M. Angelakeris et al., J. Magn. Magn.  Mater. 165, 334 (1997). DOI  
MagnaCharta is settled in         Balkan Center: KEDEK: Building A. Room: 0.3
 ++302310990576  magnacharta@physics.auth.gr
MagnaCharta, A.0.3, PO Box 8318, Balkan Center-KEDEK, 57001, Thessaloniki-Greece
Applications